Hoje é dia de mais resolução de exercícios! Dessa vez, vamos abordar probabilidade, Bayes, independência de eventos e outros assuntos predominantes em estatística básica. Então se você quer praticar, ver como fica a teoria dentro dos exercícios ou até encontrar exercícios parecidos com o que seu professor te passou, este post é para você. Continuar a ler “Resolução de Exercícios de Probabilidade”
Etiqueta: probabilidade
Livros da Springer disponíveis para download gratuitos
A Springer liberou diversos livros para download em PDF. É uma editora excelente, uma das minhas preferidas junto com a O’Reilly. Vale a pena conferir alguns para Ciência de Dados: Continuar a ler “Livros da Springer disponíveis para download gratuitos”
Probabilidade (II): Princípio Fundamental da Contagem
Em análise combinatória, princípio fundamental da contagem é a ideia de que a quantidade de formas que ações independentes distintas podem ocorrer é a multiplicação do número de modos em que elas podem se apresentar. Em outras palavras, se você tem um evento X que pode ocorrer de n formas, um evento Y, distinto e independente, que pode ocorrer de m formas, o número de formas com que esses dois eventos podem se apresentar será n*m. Continuar a ler “Probabilidade (II): Princípio Fundamental da Contagem”
Probabilidade (I): Introdução e Conceitos Básicos
A probabilidade é o estudo da chance de ocorrência de um determinado evento. Quando jogamos um dado e perguntamos “qual a probabilidade de sair o número 3?”, queremos saber qual a chance de sair 3. Queremos saber o que é esperado deste evento, que é jogar um dado. A forma que temos de quantificar uma probabilidade é um número que vai de 0 até 1. Claro que, muito provavelmente, você prefira expressar a probabilidade em percentual, o que é a mesma coisa. Quando temos 100% de chance de que o evento ocorra, a probabilidade será 1, já quando temos 50%, a chance é 0,5. Continuar a ler “Probabilidade (I): Introdução e Conceitos Básicos”
Probabilidade de um evento que nunca ocorreu
A técnica desse post provavelmente será pouco utilizada por ser algo atípico. Mas achei interessante, pode ser útil no dia a dia de um cientista de dados. Encontrei no ótimo blog do John D. Cook. Vamos lá então…
Arranjo, Permutação e Combinação
Muita gente faz confusão na hora de calcular o número de possibilidades de organizar elementos em algum espaço. Três perguntas típicas de provas de estatística e que causam muita confusão são:
A probabilidade do outro filho ser menino ou menina é…
Assim como no post Qual a probabilidade de tirar o número 1 jogando um dado duas vezes? vamos olhar para mais uma pegadinha clássica nas questões de probabilidade. E, assim como no outro post, um dos erros cometidos é não pensar no conjuntos de resultados possíveis.
Se um casal tem duas crianças, e lhe foi dito que uma delas é um menino. Qual a probabilidade da outra criança ser também um menino?
Qual a probabilidade de tirar o número 1 jogando um dado duas vezes?
Uma das perguntas mais comuns para quem estuda probabilidade ou é fã de jogos de azar: qual a probabilidade de sair o número X, pelo menos uma vez, ao jogarmos um dado n vezes?
Teorema de Bayes na prática: interpretando falso positivo
As pessoas, e eu me incluo nessa, fazem uma enorme confusão com probabilidades condicionais no cotidiano. Por exemplo, é considerada a mesma coisa a chance de um exame dar positivo se a pessoa não tem a doença e a chance de não se ter a doença se o exame dá positivo. Veja que não estamos falando da mesma coisa.
O livro “O andar do bêbado” de Leonard Mlodinow explica bem essa situação. O autor recebeu um exame de HIV com resultado positivo para a doença. Junto com o resultado, o médico lhe deu a notícia de que a chance de ele viver mais de uma década era de 1 em 1 mil.
Como o médico chegou nesse número?
Ele já sabia que o resultado do exame de HIV gera um resultado positivo com o sangue não infectado somente uma vez a cada mil amostras. Ou seja, Leonard tinha 1/1000 chance de não ter HIV. Certo?
Não. Novamente, havia 1/1000 de probabilidade de uma pessoa ter um exame positivo, sendo que ela não tinha a doença. Porém, isso não quer dizer que se o exame for positivo a chance de ela não ter a doença é 1/1000. Vamos verificar com números!
Tome uma população de 10 mil homens. Vamos considerar que o número de falsos negativos seja 0, ou seja, se o exame der negativo, a pessoa não tem HIV. Destes 10 mil, 1 possui HIV. Pelos dados do doutor, com uma simples regra de três, é fácil perceber que de 10 mil homens, com todos realizando o exame de HIV, temos 10 que terão exames com resultado positivo para a doença, mas que não estão infectados. Resumo: 1 homem com resultado positivo e com HIV, 10 com resultado positivo mas sem HIV e 9989 com exame negativo e sem HIV.
Voltando agora ao resultado de Leonard, se o exame foi positivo, ele está entre as 11 pessoas com resultado positivo. Porém, desses 11 somente 1 possui a doença. Logo, dado que o resultado foi positivo, a chance de Leonard ter a doença é de 1/11! E tudo isso graças a um pequeno erro de interpretação do teorema!
Para entender mais sobre o tema, leia o post Probabilidade Condicional e o Teorema de Bayes e o livro O andar do bêbado
Probabilidade Condicional e o Teorema de Bayes
Seguindo a linha de obtenção da probabilidade quando temos mais de um evento, muitas vezes vamos querer saber a probabilidade de algo acontecer, dada alguma condição. Por exemplo, em uma escola podemos querer calcular a probabilidade do aluno ter nota vermelha, dado que é menino. Essa probabilidade pode ser diferente da probabilidade de se ter nota vermelha, dado que é uma menina. Para melhor visualização, considere a tabela abaixo com os alunos aprovados e reprovados nas primeiras provas de cada disciplina (tabela gerada com o randbetween() do excel):
Se escolhermos aleatoriamente um aluno, qual a probabilidade dele estar aprovado em matemática dado que é um menino?
Temos um total de 13 meninos, sendo que 6 estão aprovados. Logo, a probabilidade é 6/13.
A mesma pergunta, aplicado ao caso de que tenha sido escolhida uma menina resultaria em 5/14.
Ou seja, precisamos fazer pequenos ajustes no que consideramos nosso espaço amostral.
Utilizando as notações adequadas, temos que dado dois eventos A e B, a probabilidade condicional de A dado B, denotada por P(A|B) é:
P(A|B) = P(A∩B) / P(B)
Ou seja, no nosso exemplo, queremos P(aprovado | menino) e a resposta será a interseção dos dois eventos dividido pela probabilidade de ser menino.
A probabilidade de ser homem e estar aprovado em matemática é 6/27, temos 6 meninos aprovados em matemática de um total de 27 alunos.
Como temos 13 meninos em uma sala de 27 alunos, a probabilidade de ser menino é 13/27.
Logo, P(aprovado|menino) = 6/27 ÷ 13/27 = 6/13.
Isso é o que chamamos de probabilidade condicional.
Um teorema muito importante quando se fala de probabilidade condicional é o Teorema de Bayes. O que este teorema nos fornece é uma forma de relacionar as probabilidades condicionais ao seu inverso. Por exemplo, se você precisa saber a probabilidade de um evento A ocorrer dado que ocorreu um evento B, e você sabe a probabilidade de um evento B ocorrer dado que o evento A ocorreu, o teorema vai te levar a resposta. A fórmula principal do teorema é:
P(A|B) = P(A) x P(B|A) / P(B)
BÔNUS: Agora, e se quisermos saber a probabilidade de sair coroa em um lançamento de moeda, dado que no lançamento anterior saiu cara?
Essa é uma pergunta que confunde muitas pessoas. Nem todos responderiam 1/2, que é a resposta correta.
Pense comigo, se você está lançando uma moeda, independente do que já aconteceu no passado, a chance de cair coroa é 50%. O fato de ter saído cara, ou coroa, em um primeiro lançamento não alterou nada na moeda que faça com que ela agora tenha um peso diferente e provavelmente vai sair cara (ou coroa). Se você quiser saber a probabilidade de ocorrer coroa nos dois lançamentos consecutivos, isso sim altera nosso resultado final, pois estamos avaliando os dois eventos simultaneamente. Parece besta para quem entende, mas muita gente comete este erro.